The separation and purification of biological molecules differs from that of synthetic chemicals in that the starting sample composition is typically orders-of-magnitude more complex. This book describes how to exploit the physiochemical properties of biomolecules to effect their separation and purification. The first half of the book describes the physiochemical properties, composition, and structure of biomolecules (solubility, size, mass, structure, diffusion and mobility, and ionization). The second half of the book describes how each of these physiochemical differences may be exploited in various unit separations. The fundamental principles underlying each separation unit operation and the governing equations are described along with possible variations in each method. Also described is how each of the separation methods may be scaled from lab to production. This textbook is targeted to 3rd and 4th year Biochemical and Chemical Engineering courses.
CHAPTER 1: INTRODUCTION
1.1.The Complexity of Biological Materials
1.1.1.Starting Sample Complexity
1.1.2.General Bioseparation Schema
1.2.Translating Structure to Exploitable Properties
1.3.The Basis and Relative Cost of Bioseparation Processes
1.3.1.Cost of Continuous Processes
1.3.2.Cost of Batch Processes
CHAPTER 2: BIOMOLECULES
2.1.The Major Biochemical Components
2.2.Water
2.2.1.Water as a Solvent
2.2.2.Water as a Source of Ions
2.2.3.Oxidation-Reduction Reactions with Water
2.3. Small Molecule Pools
2.3.1.Fatty Acids, and Membrane-Soluble Materials
2.3.2.Primary and Secondary Metabolites
2.3.3.Amino Acids
2.3.4.Nucleosides and Nucleotides
2.3.5.Sugars
2.4.Macromolecules
2.4.1.Lipids
2.4.2.Polysaccharides
2.4.3.Lipopolysaccharides and Peptidoglycan
2.4.4.Proteins
2.4.5.Nucleic Acids
CHAPTER 3: SOLUBILITY
3.1.Solvent-Solute Interactions
3.1.1.London Dispersion Force (Van der Waals Interactions)
3.1.2.Dipole Interactions
3.1.3.Hydrogen Bonding
3.1.4.Ions
3.1.5.Size Matters
3.2.Solubility Parameters
3.2.1.Hansch Lipophilic Parameter
3.2.2.Hildebrand Parameter
3.2.3.Hansen Parameters
3.2.4.Hansen Parameter Estimation by Group Contribution Method
3.3.Applications of Solubility Parameters
3.3.1.The Solubility of Cellular Components
3.3.2.Phase Equilibria
3.3.3.Macromolecular Biomolecule Solubility
3.3.4.Mobile Phase Optimization in Chromatography
CHAPTER 4: MASS AND SIZE
4.1.Atomic Composition
4.1.1.Elemental Mass
4.1.2.Nuclear Binding Energy
4.1.3.Molecules
4.1.4.Isotopic Distribution
4.1.5.Mass Changes on Ionization
4.1.6.Radicals and Radical Ions
4.2.Molecular size
4.2.1.Molar Volume
4.2.2.Volume Change on Mixing
4.2.3.Diffusivity
4.3.4.Rotational Diffusivity
4.3.5.Radii of Gyration and Hydration
4.3.6.MW Distribution
4.3.Comparative Sizes
CHAPTER 5: IONIZATION
5.1.Ionization Equilibria
5.1.1.Simple Acids and Bases
5.1.2.Multiple-Ionizable Groups
5.1.3.Total and Net Charge
5.1.4.Isoelectric Point
5.2.Electroneutrality Constraint
5.3.Buffer Capacity
CHAPTER 6: PRECIPITATION AND CRYSTALIZATION
6.1.Precipitation and Crystallization Mechanisms
6.1.1.Thermal Cycling
6.1.2.Ionic Solubility
6.1.3.Miscible Solvents
6.1.4.Precipitation with Polymers
6.1.5.Solvent Volume Reduction
6.2.Particle Growth
6.2.1.Nucleation
6.2.2.Particle Growth
6.2.3.Particle Diameter Growth
6.2.4.Particle Size Distribution
6.3.Protein Precipitation and Crystallization
6.3.1.Protein Precipitation
6.3.2.Protein Crystallization
CHAPTER 7: EXTRACTION AND LEACHING
7.1.Phase Equilibrium
7.1.1.The Thermodynamics of Phase Equilibrium
7.1.2.Mass Transport Kinetics
7.1.3.Extraction Efficiency
7.2.Extractions
7.2.1. Batch Extraction
7.2.2. Continuous Extraction
7.3.Leaching
7.3.1.Mass Transfer from the Solid Particle
7.3.2.Fixed Bed Leaching Process
7.3.3.Pressure Drop and Particle Stability During Fixed-Bed Leaching
CHAPTER 8: CHROMATOGRAPHY
8.1.Conceptual Chromatography Model
8.1.1.Mobile Phase Model
8.1.2.Boundary and Initial Conditions
8.2.A More General Model
8.2.1.Mobile Phase Through a Bead-Packed Column
8.2.2.Model of the Solid Surface (Bead)
8.2.3.Dimensional Analysis of the Model
8.3.Estimation and Use of Dimensionless Parameters
8.3.1.Dimensional Parameters
8.3.2.Column Pressure Drop Constraint
8.4.Langmuir Isotherm
8.4.1.Adsorption versus Absorption
8.4.2.An Illustrative Thought Experiment
8.4.3.Langmuir Isotherm
8.4.4.Measuring the Binding Affinity and Number of Binding Sites
8.4.5.Langmuir Isotherm Based on the Total Analyte Concentration
8.4.6.Multicomponent Langmuir Isotherm
8.5.Chromatography Process Scale-Up
8.5.1.Resolving Power
8.5.2.Scale-Up
CHAPTER 9: CHROMATOGRAPHIC MODES
9.1.Reverse Phase and Hydrophobic Interaction
9.1.1.Mobile Phase
9.1.2.Solid Phase
9.1.3.Mobile Phase Modification
9.2.Ion Exchange Chromatography
9.2.1.Types of Ion Exchange Resins
9.2.2.Ion Exchange
9.2.3.pH Isotherm
9.2.4.Ion Displacement Isotherm
9.2.5.Polyionic Analytes
9.3.Size Exclusion Chromatography
9.3.1.Measuring the Apparent Porosity
9.3.2.Effective Diffusivity Inside Pores
9.3.3.SEC Applications
9.4.Affinity Chromatography
9.5.Displacement Chromatography
9.5.1.Displacement Mechanism Model
9.5.2.Displacing Agents
CHAPTER 10: ELECTROPHORESIS
10.1.The Electrophoretic Process
10.1.1.Process Description
10.1.2.Electrochemical Thermodynamics
10.2.Rigorous Model for Electrophoresis
10.2.1.Material Balance Equations
10.2.2.Phenomenological Equations
10.2.3.Model for Total Chemical Component
10.2.4.Current
10.2.5.Local Electroneutrality Constraint
10.2.6. Numerical Solutions
10.3.Joule Heating
10.4.A Practical Model
10.5. Electroosmotic Flow
10.5.1.Charged Surface of the Electrolyte Channel
10.5.2.Electroosmotic Flow (EOF)
10.5.3.Effect of EOF on Separations
10.5.4.Apparent Mobility
10.5.5.Design for Separation
CHAPTER 11: ELECTROPHORETIC SEPARATION MODES
11.1.Isotachophoresis
11.2.Isoelectric focusing (IEF)
11.2.1pH Gradient
11.2.2.Maintaining the pH Gradient
11.2.3.Isoelectric Precipitation
11.2.4.Continuous Isoelectric Focusing
11.3Zone Electrophoresis
11.3.1.Electrophoretic Mobility and Molecular Ion Size
11.3.2.Separation by Electrophoretic Mobility
11.3.3.Joule Heating Limitation in Zone Electrophoresis
11.3.4.Electroosmotic Flow
11.4.Gel Electrophoresis
11.4.1.Sieving Potential
11.4.2. Gel Electrophoretic Applications
11.4.3.Process-Scale Gel Electrophoresis
11.5.Electrodialysis246
11.5.1.Electrophoretic Rate Enhancement
11.5.2.Precipitation at the Membrane
11.5.3.Scale-up Considerations
11.5.4.Continuous Electrodialysis
11.6.Electrochromatography
CHAPTER 12: PARTICULATE-LIQUID SEPARATIONS
12.1.The Nature of Biological Particles
12.2.Filtration
12.2.1.Filter Types
12.2.2.Filtration Modes
12.2.3.Pressure Drop through a Filter
12.3.Centrifugation
12.3.1.Stokes’ Law
12.3.2.Correction for Particle Interactions
12.3.3.Speed and Time Requirements of a Centrifuge
12.3.4.Batch and Continuous Centrifugation
12.4.Basket Centrifuge or Centrifugal filtration
12.4.1.Liquid Velocity and Pressure Drop
12.4.2.Force on the Solid Particles
12.3.3.Empty Bed Case
12.3.4.Centrifuge Design Constraints
APPENDIX A: TABLE OF HANSEN PARAMETER VALUES
APPENDIX B: FRACTIONAL PARAMETER VALUES FOR GROUP CONTRIBUTION ESTIMATION OF HANSEN SOLUBILITY PARAMETERS
APPENDIX C: SET OF TEST SOLVENTS USEFUL FOR DEFINING THE HANSEN SOLUBILITY ENVELOPE
APPENDIX D: ISOTPIC MASSES AND NATURAL ABUNDANCES
(c) 2023 LVS Sciences, LLC. All Rights Reserved
1321 Upland Drive Suite 6357
Houston, TX. 77043
United States of America
www.lvssciencesllc.com